3D printing, the technology future
Here’s what’s holding back 3D printing, the technology that’s supposed to revolutionize manufacturing and countless other industries: patents. In February 2014, key patents that currently prevent competition in the market for the most advanced and functional 3D printers will expire, says Duann Scott, design evangelist at 3D printing company Shapeways.
These patents cover a technology known as “laser sintering,” the lowest-cost 3D printing technology. Because of its high resolution in all three dimensions, laser sintering can produce goods that can be sold as finished products.
Whenever someone talks about 3D printing revolutionizing manufacturing, they’re talking about the kinds of goods produced by, for example, the industrial-grade 3D printing machines used by Shapeways. The company used by countless industrial designers, artists and entrepreneurs who can’t afford their own 3D laser sintering printers, which can cost tens of thousands of dollars each.
A huge drop in price and a flood of Chinese 3D printers:
Older models of 3D printers are already pouring out of China.Xinhua
Once the key patents on 3D printing via laser sintering expire, we could see huge drop in the price of these devices, says Scott. This isn’t just idle speculation; when the key patents expired on a more primitive form of 3D printing, known as fused deposition modeling, the result was an explosion of open-source FDM printers that eventually led to iconic home and hobbyist 3D printer manufacturer Makerbot. And Makerbot was recently acquired by 3D printing giant Stratasys for about $400 million in stock, plus a potential $200 million stock bonus. That acquisition was a homecoming of sorts for Makerbot; Stratasys was founded by Scott Crump, who invented 3D printing via FDM, the very technology on which Makerbot was based.
Within just a few years of the patents on FDM expiring, the price of the cheapest FDM printers fell from many thousands of dollars to as little as $300. This led to a massive democratization of hobbyist-level 3D printers and injected a huge amount of excitement into the nascent movement of “Makers,” who manufacture at home on the scale of one object at a time.
A similar sequence involving the lifting of intellectual property barriers, a rise in competition, and a huge drop in price is likely to play out again in laser deposition 3D printers, says Shapeways’ Scott. “This is what happened with FDM,” he says. “As soon as the patents expired, everything exploded and went open-source, and now there are hundreds of FDM machines on the market. An FDM machine was $14,000 five years ago and now it’s $300.”
Many of those inexpensive 3D printers are being manufactured in—where else?—China. In addition to a thriving home-grown industry in 3D printers, in 2012 China’s Ministry of Industry and Information Technology launched an initiative to fund 10 research centers devoted to 3D printing, at a cost of 200 million yuan ($32 million).
Disruptive implications for industry and the democratization of distributed manufacturing
Copies of famous works of art are just the beginning.AP/Cosmo Wenman
One thing a lot of observers don’t understand about 3D printing is that not all 3D printing technologies are created equal. The revolution in manufacturing that was supposed to come with cheap, desktop 3D printers hasn’t materialized because, frankly, the models they produce are basically novelties, handy for giving you a feel for what something will look like in three dimensions, but not really usable for creating prototypes that can be directly translated into molds for mass production, and certainly not usable for creating finished goods.
With the expiration of patents on laser sintering 3D printing, however, all of that is about to change. Currently, designers who want to go from idea to finished product in a matter of hours, and create finished products to sell to the public—like these accessories for Google Glass—have to order 3D prints from a company like Shapeways. The problem is, Shapeways’ services are in such demand that it takes two weeks to get a finished product from the company, which is hardly the future of instant manufacturing that 3D printing was supposed to enable.
One of Shapeways’ problems is that the company can’t buy enough advanced 3D printers (the laser-sintering kind) to keep up with demand. This is because 3D Systems, the company that makes the models that Shapeways uses, has a 12- to 18-month waitlist for its printers. Cheap laser-sintering 3D printers of the sort made by Formlabs, which sells a desktop laser-sintering 3D printer for $3,300, could finally give people the ability to manufacture (plastic) parts of the same quality as those mass-produced through traditional means, such as injection molding. (Formlabs got around the patent issue by first getting sued by and then licensing the IP of 3D Systems, which controls the key patents that are set to expire.)
[Correction: Formlabs' Form 1 printer is not an SLS printer, but an SLA or STL model, which means it uses yet a third 3D printing technology (which is also dependent on light) called stereolithography. In SLA printing, a photo-sensitive liquid resin is exposed to light, and cured into a solid plastic one layer at a time. This technology is also covered by some of the critical patents mentioned in this piece.]
Or, if you believe Duann Scott, people will continue to use services like those of his company so that they can get even higher quality 3D prints, and in larger quantities—and, potentially, much faster than the current turnaround time of two weeks. All of this means that the release of these patents could be an important step in getting us to the future of mass customization and distributed manufacturing that we were promised.
0 comments:
Post a Comment
please leave your opinion about his blog ,
this will help us to give some more quality information.